Improving Docking Performance Using Negative Image-Based Rescoring

نویسندگان

  • Sami T. Kurkinen
  • Sanna Niinivehmas
  • Mira Ahinko
  • Sakari Lätti
  • Olli T. Pentikäinen
  • Pekka A. Postila
چکیده

Despite the large computational costs of molecular docking, the default scoring functions are often unable to recognize the active hits from the inactive molecules in large-scale virtual screening experiments. Thus, even though a correct binding pose might be sampled during the docking, the active compound or its biologically relevant pose is not necessarily given high enough score to arouse the attention. Various rescoring and post-processing approaches have emerged for improving the docking performance. Here, it is shown that the very early enrichment (number of actives scored higher than 1% of the highest ranked decoys) can be improved on average 2.5-fold or even 8.7-fold by comparing the docking-based ligand conformers directly against the target protein’s cavity shape and electrostatics. The similarity comparison of the conformers is performed without geometry optimization against the negative image of the target protein’s ligand-binding cavity using the negative image-based (NIB) screening protocol. The viability of the NIB rescoring or the R-NiB, pioneered in this study, was tested with 11 target proteins using benchmark libraries. By focusing on the shape/electrostatics complementarity of the ligand-receptor association, the R-NiB is able to improve the early enrichment of docking essentially without adding to the computing cost. By implementing consensus scoring, in which the R-NiB and the original docking scoring are weighted for optimal outcome, the early enrichment is improved to a level that facilitates effective drug discovery. Moreover, the use of equal weight from the original docking scoring and the R-NiB scoring improves the yield in most cases.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Assessing the performance of MM/PBSA and MM/GBSA methods. 5. Improved docking performance using high solute dielectric constant MM/GBSA and MM/PBSA rescoring.

With the rapid development of computational techniques and hardware, more rigorous and precise theoretical models have been used to predict the binding affinities of a large number of small molecules to biomolecules. By employing continuum solvation models, the MM/GBSA and MM/PBSA methodologies achieve a good balance between low computational cost and reasonable prediction accuracy. In this stu...

متن کامل

Correlation between Virtual Screening Performance and Binding Site Descriptors of Protein Targets

Rescoring is a simple approach that theoretically could improve the original docking results. In this study AutoDock Vina was used as a docked engine and three other scoring functions besides the original scoring function, Vina, as well as their combinations as consensus scoring functions were employed to explore the effect of rescoring on virtual screenings that had been done on diverse target...

متن کامل

Rescoring of docking poses using force field-based methods

Existing protein-ligand docking methods computationally screen thousands to millions of organic molecules against protein structures, trying to find those with complementary shapes and highest binding free energies. To allow large molecular databases to be screened rapidly, simple and approximative scoring functions are used as a fast filter, resulting in low hit rates. Therefore, docking hit l...

متن کامل

Evaluation of the coarse-grained OPEP force field for protein-protein docking

BACKGROUND Knowing the binding site of protein-protein complexes helps understand their function and shows possible regulation sites. The ultimate goal of protein-protein docking is the prediction of the three-dimensional structure of a protein-protein complex. Docking itself only produces plausible candidate structures, which must be ranked using scoring functions to identify the structures th...

متن کامل

HERNÁNDEZ-VELA: CONTEXTUAL RESCORING FOR HUMAN POSE ESTIMATION 1 Contextual rescoring for Human Pose Estimation

A contextual rescoring method is proposed for improving the detection of body joints of a pictorial structure model for human pose estimation. A set of mid-level parts is incorporated in the model, and their detections are used to extract spatial and score-related features relative to other body joint hypotheses. A technique is proposed for the automatic discovery of a compact subset of poselet...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 9  شماره 

صفحات  -

تاریخ انتشار 2018